Đáp án A
P T ⇔ x + 4 > 0 14 − x > 0 log 3 x + 4 14 − x = 4 ⇔ − 4 < x < 14 x + 4 14 − x = 81 ⇔ − 4 < x < 14 x = 5 ⇒ x = 5 ⇔ S = 5
Đáp án A
P T ⇔ x + 4 > 0 14 − x > 0 log 3 x + 4 14 − x = 4 ⇔ − 4 < x < 14 x + 4 14 − x = 81 ⇔ − 4 < x < 14 x = 5 ⇒ x = 5 ⇔ S = 5
Biết rằng tập nghiệm S của bất phương trình log - x 2 + 100 x - 2400 < 2 có dạng S = a ; b \ x ∘ . Giá trị của a + b - x ∘ bằng:
A. 150.
B. 100.
C. 30.
D. 50.
Biết rằng tập nghiệm S của bất phương trình log - x 2 + 100 x - 2400 < 2 có dạng S = (a;b)\{x0}. Giá trị của a + b – x0 bằng:
A. 100
B. 30
C. 150
D. 50
Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để phương trình log ( ( m - 1 ) . 16 x + 2 . 25 x 5 . 20 x ) - 5 x + 1 . 4 x = ( 1 - m ) 4 2 x - 2 . 25 x có hai nghiệm thực phân biệt. Số phần tử của S bằng
A. 4.
B. 3.
C. 1.
D. 2.
Tìm số nghiệm nguyên của bất phương trình log 5 2 3 x - 2 log 2 ( 4 - x ) - log ( 4 - x ) 2 + 1 > 0
A. 3
B. 1
C. 0
D. 2
Có tất cả bao nhiêu số nguyên m để phương trình log ( m - x ) = 3 log ( 4 - 2 x - 3 ) có hai nghiệm thực phân biệt.
A. 6.
B. 2.
C. 3.
D. 5.
Tìm tập nghiệm S của bất phương trình ( 3 - 1 ) ( x + 1 ) ) > 4 - 2 3
A. S = [ 1 ; + ∞ )
B. S = ( 1 ; + ∞ )
C. S = [ - ∞ ; 1 ]
D. S = ( - ∞ ; 1 )
Gọi S là tập nghiệm của phương trình 2 l o g 2 ( 2 x - 2 ) + l o g 2 ( x - 3 ) 2 = 2 . Tổng các phần tử của S bằng:
A. 6
B. 4 + 2
C. 2 + 2
D. 8 + 2
Gọi S là tập nghiệm của phương trình 2 log 2 ( 2 x - 2 ) + log 2 ( x - 3 ) 2 = 2 trên ℝ . Tổng các phần tử của S là
A. 8 + 2
B. 4 + 2
C. 6 + 2
D. 8
Gọi S là tập nghiệm của phương trình log 5 ( x + 1 ) + log 5 ( x - 3 ) = 1 Tìm S
A. S = - 2 ; 4
B. S = - 1 + 13 2 ; - 1 - 13 2
C. S = 4
D. S = - 1 + 13 2
Tích các nghiệm của phương trình log 2 x + 2 - log x = 2 là
A. 10 3 - 5 2
B. 10 3 + 2 2
C. 10 3 + 5 2
D. 10 3 - 2 2