Gọi S1 là tập nghiệm của bất phương trình log 2 ( x + 5 ) + log 1 2 ( 3 - x ) ≥ 0 và S2 là tập nghiệm của bất phương trình log2(x + 1) ≥ 1. Khẳng định nào dưới đây đúng ?
A. S 1 ∩ S 2 = [ 1 ; 3 )
B. S 1 ∩ S 2 = [ - 1 ; 3 )
C. S 1 ∩ S 2 = - 1 ; 1
D. S 1 ∩ S 2 = 1 ; 3
Tập nghiệm của bất phương trình 2 x + 2 ( x + 1 ) ≤ 3 x + 3 ( x - 1 )
A. x ∈ [ 2 ; + ∞ )
B. x ∈ 2 ; + ∞
C. x ∈ - ∞ ; 2
D. 2 ; + ∞
Tập nghiệm của bất phương trình 2 x + 2 ( x + 1 ) ≤ 3 x + 3 ( x - 1 )
A. x ∈ [ 2 ; + ∞ )
B. x ∈ 2 ; + ∞
C. x ∈ - ∞ ; 2
D. 2 ; + ∞
Với m là tham số thực dương khác 1. Hãy tìm tập nghiêm S của bất phương trình logm(2x2 + x + 3) ≤ logm(3x2 - x). Biết rằng x = 1 là một nghiệm của bất phương trình.
Tập nghiệm bất phương trình log 2 ( x - 1 ) < 3 là
Tìm tập nghiệm của bất phương trình:
A. x < 3 B. x ≥ 1
C. 1 ≤ x < 3 D. x < 1
Tìm tập nghiệm của bất phương trình: 2 2 x 8 > 1
A. x > 3/2 B. x < 3/2
C. x > 2/3 D. x < 2/3
Tập nghiệm của bất phương trình log 2 x - 1 > 3 là
Tìm tập nghiệm của bất phương trình: 2 x 2 < 2 7 - x
A. x < 3 B. x ≥ 1
C. 1 ≤ x < 3 D. x < 1
Tập nghiệm của bất phương trình
log 2 x + 1 - 2 log 4 5 - x < 1 - log 2 x - 2 là
A. (3;5)
B. (2;3)
C. (2;5)
D. (-4;3)