Tập hợp tất cả các giá trị thực của tham số m để phương trình 8 x - m 2 2 x + 1 + 2 m 2 - 1 2 x + m - m 3 = 0
có ba nghiệm thực phân biệt là khoảng (a;b). Tính S = a b
A. S = 2 3
B. S = 4 3
C. S = 3 2
D. S = 5 3 3
Gọi S = (a;b) là tập tất cả các giá trị của tham số thực m để phương trình log 2 m x − 6 x 3 + log 1 2 − 14 x 2 + 29 x − 2 = 0 có 3 nghiệm phân biệt. Khi đó hiệu H = a - b bằng
A. 5 2 .
B. 1 2 .
C. 2 3
D. 5 3
Gọi S = a ; b là tập tất cả các giá trị của tham số thực m để phương trình log 2 m x − 6 x 3 + log 1 2 − 14 x 2 + 29 x − 2 = 0 có 3 nghiệm phân biệt. Khi đó hiệu H = b - a bằng
A. 5 2
B. 1 2
C. 2 3
D. 5 3
Cho S là tập hợp các giá trị thực của tham số m để phương trình 2 − x + 1 − x = m + x − x 2 có hai nghiệm phân biệt. Tổng các số nguyên trong S bằng
A. 11
B. 0
C. 5
D. 6
Tìm tất cả các giá trị thực của tham số m để bất phương trình ( m + 1 ) x 2 - 2 ( m + 1 ) x + 4 ≥ 0 ( 1 ) có tập nghiệm S = ℝ ?
A. m > - 1
B. - 1 ≤ m ≤ 3
C. - 1 < m ≤ 3
D. - 1 < m < 3
Gọi S là tập hợp các giá trị thực của tham số m sao cho phương trình ( x + 1 ) 3 + 3 - m = 3 3 x + m 3 có đúng nghiệm thực. Tích tất cả các phần tử của tập hợp S là
A. -1
B. 1
C. 3
D. 5
Gọi S là tập tất cả các giá trị thực của tham số m để bất phương trình
x 6 + 3 x 4 − m 3 x 3 + 4 x 2 − m x + 2 ≥ 0 có nghiệm với mọi x ∈ ℝ . Biết rằng S = a ; b , a , b ∈ ℝ . Tính P = 2 b − 3 a
A. P = 5
B. P = 10
C. P = 15
D. P = 0
Cho phương trình 4 x − m .2 x + 1 + m + 2 = 0 , m là tham số. Gọi S là tập hợp các giá trị của m sao cho phương trình trên có hai nghiệm dương phân biệt. Biết S là một khoảng có dạng (a;b) tính a-b
A. 1
B. 3
C. 4
D. 2
Cho phương trình log 2 2 x - 4 log 2 x - m 2 - 2 m + 3 = 0 Gọi S là tập hợp tất cả các giá trị thực của tham số m để phương trình có hai nghiệm thực phân biệt x 1 , x 2 thỏa mãn x 1 2 + x 2 2 Tính tổng các phần tử của S.
A. - 1
B. - 2
C. 1
D. 2