Tập hợp tất cả các giá trị thực của tham số thực m để hàm số y = l n ( x 2 + 1 ) - m x + 1 đồng biến trên R
A. [-1;1].
B. (-1;1)
C. (-∞;-1]
D.(- ∞;-1)
Tập hợp tất cả các giá trị thực của tham số m để hàm số y = ln x 2 + 1 - m x + 1 đồng biến trên R là
A. [-1;1]
B. - ∞ ; - 1
C. ( - ∞ ; - 1 ]
D. (-1;1)
Tìm tập hợp tất cả các giá trị thực của tham số m để hàm số y = x 3 - 3 x 2 + ( 2 m - 1 ) x + 2019 đồng biến trên (2;+∞)
A. m ≥ 1 2
B. m < 1 2
C. m = 1 2
D. m ≥ 0
Cho hàm số y = 2 x + 1 + 1 2 - m với m là tham số thực. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m trong khoảng (-50;50) để hàm số nghịch biến trên khoảng (-1;1). Số phần tử của tập hợp S là:
A. 47
B. 48
C. 50
D. 49
Cho hàm số y = 2 x + 1 + 1 2 x - m với m là tham số thực. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m trong khoảng (–50;50) để hàm số ngịch biến trên (–1;1). Số phần tử của S là:
A. 49
B. 47
C. 48
D. 50
Cho hàm số y = 2 x 3 - 3 m x 2 + 3 ( 5 m 2 + 1 ) x - 3 s i n x với m là tham số thực. Tìm tập hợp tất cả các giá trị của m để hàm số đồng biến trên (l;3).
A . m ≥ 1
B . m ≤ - 1
C . m > 0
D . m ∈ R
Tìm tập hợp S tất cả các giá trị của tham số thực m để hàm số y = x 3 3 + m x 2 + 2 m + 3 x + 1 đồng biến trên R.
A. S = − ∞ ; 3 ∪ 1 ; + ∞
B. S = − 1 ; 3
C. S = − ∞ ; − 1 ∪ 3 ; + ∞
D. S = − 1 ; 3
Tìm tất cả giá trị thực của tham số m để hàm số y = x 3 3 + ( m + 1 ) x 2 + ( 3 m + 1 ) x + 2 đồng biến trên R
A. 0 ≤ m ≤ 1
B. m ≥ 1 m ≤ 0
C. 0 < m < 1
D. m > 1 m < 0
Tìm tập hợp tất cả các giá trị của tham số thực m để hàm số y = x 2 + 1 - m x - 1 đồng biến trên khoảng ( - ∞ ; + ∞ ) .
A. - ∞ ; 1
B. [ 1 ; + ∞ )
C. - 1 ; 1
D. - ∞ ; - 1