Chọn D.
Do đó ta có bảng biến thiên sau:
Để hàm số nghịch biến trên khoảng (-1;1) thì
Chọn D.
Do đó ta có bảng biến thiên sau:
Để hàm số nghịch biến trên khoảng (-1;1) thì
Cho hàm số y = 2 x + 1 + 1 2 x - m với m là tham số thực. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m trong khoảng (-50;50) để hàm số nghịch biến trên khoảng (-1;1). Số phần tử của tập hợp S là:
A. 47
B. 48
C. 50
D. 49
Cho hàm số y = 2 x + 1 + 1 2 x - m với m là tham số thực. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m trong khoảng (-50;50) để hàm số nghịch biến trên (-1;1). Số phần tử của S là:
Tìm tập hợp S tất cả các giá trị của tham số thực m để hàm số y = 1 3 x 3 - m + 1 x 2 + m 2 + 2 m x - 3 nghịch biến trên khoảng ( - 1 ; 1 )
Gọi S là tập hợp tất cả các giá trị nguyên dương và nhỏ hơn 2018 của tham số m để hàm số y = x - 2 x - m nghịch biến trên khoảng (1;9). Tính số phần tử của tập hợp S.
Cho hàm số \(f\left(x\right)=\frac{1}{5}m^2x^5-\frac{1}{3}mx^3+10x^2-\left(m^2-m-20\right)x\)Gọi S là tập hợp tất cả các giá trị của tham số m để hàm số đồng biến trên R. Tổng giá trị của tất cả các phần tử thuộc S bằng :
A. 3/2
B. -2
C. 5/2
D. 1/2
Cho hàm số f(x)=3sinx +3. Gọi S là tập hợp các giá trị nguyên của tham số m để hàm số y = f 3 ( x ) - 3 m f 2 ( x ) + 3 ( m 2 - 4 ) f ( x ) - m nghịch biến trên khoảng ( 0 ; π 2 ) . Số tập con của S bằng
Cho hàm số y = m x + 4 m x + m với m là tham số. Gọi S là tập hợp tất cả các giá trị nguyên của m để hàm số nghịch biến trên các khoảng xác định. Tìm số phần tử của S.
A. 5.
B. 4.
C. Vô số.
D. 3.
Cho hàm số y = - m x + 3 3 x - m với m là tham số. Gọi S là tập hợp tất cả các giá trị nguyên của m để hàm số nghịch biến trên từng khoảng xác định của nó. Tìm số phần tử của tập S
Gọi S là tập hợp các giá trị của tham số m để giá trị lớn nhất của hàm số y = x 2 - m x + 2 m x - 2 trên đoạn [-1;1] bằng 3. Tính tổng tất cả các phần tử của S.
A. - 8 3
B. 5
C. 5 3
D. -1