Chọn D.
Gọi M là trung điểm của AC suy ra
.
Do tam giác BAM vuông tại A
Chọn D.
Gọi M là trung điểm của AC suy ra
.
Do tam giác BAM vuông tại A
Cho tam giác đều ABC có cạnh bằng 6cm. Một điểm M nằm trên cạnh BC sao cho BM = 2cm.
a, Tính độ dài của đoạn thẳng AM và tính côsin của góc BAM ;
b, Tính bán kính đường tròn ngoại tiếp tam giác ABM;
c, Tính độ dài đường trung tuyến vẽ từ đỉnh C của tam giác ACM;
d, Tính diện tích tam giác ABM.
Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC
Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.
Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán kính đường tròn ngoại tiếp ∆MBC.
Bài 13:Cho ABC có 0 0 A B b = = = 60 , 45 , 2 tính độ dài cạnh a, c, bán kính đường tròn ngoại tiếp và diện tích tam giác ABC
Bài 14:Cho ABC AC = 7, AB = 5 và 3 cos 5 A = . Tính BC, S, a h , R, r.
Bài 15:Cho ABC có 4, 2 m m b c = = và a =3 tính độ dài cạnh AB, AC.
Bài 16:Cho ABC có AB = 3, AC = 4 và diện tích S = 3 3 . Tính cạnh BC
Bài 17:Cho tam giác ABC có ˆ o A 60 = , c h 2 3 = , R = 6. a) Tính độ dài các cạnh của ∆ABC. b) Họi H là trực tâm tam giác ABC. Tính bán kính đường tròn ngoại tiếp ∆AHC.
Bài 18:a. Cho ABC biết 0 0 a B C = = = 40,6; 36 20', 73 . Tính BAC , cạnh b,c. b.Cho ABC biết a m = 42,4 ; b m = 36,6 ; 0 C = 33 10' . Tính AB, và cạnh c.
Bài 19:Tính bán kính đường tròn nội tiếp ABC biết AB = 2, AC = 3, BC = 4.
Bài 20:Cho ABC biết A B C (4 3; 1 , 0;3 , 8 3;3 − ) ( ) ( ) a. Tính các cạnh và các góc của ABC b. Tính chu vi và diện tích ABC
Tam giác ABC vuông tại A, có AB = AC = a. Điểm M nằm trên cạnh BC sao cho \(BM=\dfrac{BC}{3}\) . Tính độ dài AM
cho tam giác ABC vuông tại A (AC>AB) Đường cao AH (H thuộc BC) trên tia HC lấy điểm D sao cho HD=HA . Đường vuông góc với BC tại D cắt AC tại E .
a) CMR hai tam giác BEC và ADC đồng dạng .Tính độ dài BE theo m=AB
b) ọi M là tung điểm của đoạn BE . CMR ha tam giác BHM và BEC đồng dạng . Tính số đo góc AHM
c) Tia AM cắt BC tại G cm \(\dfrac{\text{GB}}{\text{BC}}=\dfrac{\text{HD}}{\text{AH+HC}}\)
Tính độ dài đường trung tuyến
Cho tam giác ABC, có cạnh BC=a, AC=b, AB =c. Gọi ma , mb , mc lần lượt là độ dài trung tuyến từ đỉnh A, B, C của tam giác. Hãy tính ma , mb , mc theo a, b, c.
Cho tam giác ABC có AB = c; BC = a; AC = b . Nếu giữa a; b; c có liên hệ b2 + c2 = 2a2 thì độ dài đường trung tuyến xuất phát từ đỉnh A của tam giác tính theo a bằng:
A. a 3 2
B. a 3 3
C. a
D. 2a
Cho tam giác ABC có tọa độ 3 điểm là A( -2; 3); B( 1; 4) và C(4; 1) ; đường trung tuyến BM có phương trình là:
A. y-1=0
B. x-1=0
C. x- y+ 2= 0
D. x-3= 0
Cho tam giác ABC vuông tại A có AC = 12; M là trung điểm AC. Tính B M → . C A →
A. 12
B. -36
C. 36
D. -72
Câu 6: Cho tàm giác ABC có A(1; - 1) ;B(2; 0) ;C(3; 5) a) Tìm tọa độ các vecto AB ,AC ,BC b) Tính độ dài các cạnh của tam giác ABC. Từ đó tính chu vi tam giác. c) Tìm tọa độ trung điểm các cạnh và tìm tọa độ trọng tâm của tam giác ABC. d) Tìm tọa độ điểm D để tứ giác ABCD là hnh bình hành e) Tọa độ chân đường cao xuất phát từ A của tam giác. Đ) Tính góc A?