e mới hok lớp dưới 9 thôi
e mới hok lớp dưới 9 thôi
Cho tam giác ABC vuông tại A (AB<AC). Đường tròn (O) đường kính AC cắt BC tại H
a. Chứng minh AH ⊥ BC
b. Gọi M là trung điểm của Ab. Chứng minh HM là tiếp tuyến của(O)
c. Tia phân giác của góc HAC cắt BC tại E và cắt (O) tại D. Chứng minh DA.DE=DC2
d. Trường hợp AB=12cm, AC=16cm. Tính bán kính đường tròn nội tiếp ΔAMN
Cho tam giác ABC vuông tại A . Đường tròn (O) đường kính AB cắt BC tại H . Tia phân giác của góc HAC cắt DC tại E và cắt đường tròn (O) tại B .
a) Chứng minh: AH\(\perp BC\)
b) Gọi M là trung điểm của AB . Chứng minh HM là tiếp tuyến của đường tròn tâm O
c) Chứng minh: DA. DE=DC\(^2\)
Làm giúp mình 2 bài này với, mai mình phải nộp rồi!!!
Bài 1:
Từ điểm A nằm ngoài đường tròn (O;R), vẽ 2 tiếp tuyến AB, AC với đường tròn.
a) Chứng minh tứ giác OBAC nội tiếp và OA vuông góc BC tại H
b) Vẽ đường kính CD của đường tròn (O;R), AD cắt (O) tại M. Chứng minh: góc BHM = góc MAC
c) Tia BM cắt AO tại N. Chứng minh NA=NH
d) Vẽ ME là đường kính đường tròn (O), gọi I là trung điểm DM. Chứng minh: 3 điểm B, I, E thẳng hàng và BI song song MH.
Bài 2:
Cho tam giác ABC vuông tại A. Vẽ đường tròn tâm O đường kính AC cắt BC tại H. Gọi I là trung điểm của HC. Tia OI cắt (O) tại F
a) Chứng minh AH là đường cao của tam giác ABC và AB^2= BH. BC
b) Chứng minh: Tứ giác ABIO nội tiếp
c) Chứng minh: AF là tia phân giác của góc HAC
d) AF cắt BC tại D. Chứng minh: BA=BD
Cho tam giác ABC vuông tại A (AB<AC). Vẽ đường tròn tâm O đường kính AB cắt BC tại H.
a) Chứng minh AH vuông góc BC
b) Gọi I là trung điểm AB. Chứng minh IH là tiếp tuyến (O)
c) Tia phân giác góc HAC cắt BC tại E, cắt (O) tại D. Chứng minh AD * DE = DC2
d) Cho AB = 12, AC = 16. Tính bán kính đường tròn nội tiếp tam giác IAH
GIẢI GIÚP EM CÂU D THÔI Ạ GIÚP EM GẤP
Bài 6. (3đ) Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường tròn tâm O đường kính AB cắt BC tại điểm H. a.Tính độ dài AH, CH b. Kẻ OK vuông góc với AH tại K và tia OK cắt AC tại D. Chứng minh: DH là tiếp tuyến của đường tròn (O) c. Từ trung điểm I của AK kẻ đường thẳng vuông góc với AB và cắt đường tròn tại điểm M. Chứng minh: AM = AK.
1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC
2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB
3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)
4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)
5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O
6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD
1 .
Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn tâm I, đường kính AH cắt AB, AC lần lượt tại M và N, D là giao điểm của MN và OA
a) chứng minh AM.AB=AN.AC và tứ giác BMNC nội tiếp
b) cm tam giác ADI đồng dạng tam giác AHO
c) gọi E là giao điểm BC và NM, K là giao điểm AE và (I). cm góc BKC = 90°
2 .
Cho tam giác ABC nhọn, BC = AC, đường tròn tâm O đường kính BC cắt AB,AC tại E,F. BF cắt CE tại H, AH cắt BC tại D.
a) Chứng minh: AD vuông góc BC
b) Chứng minh: AD là đường phân giác của góc EDF
c) Đường tròn đường kính EC cắt AC tại M, BM cắt (O) tại K. Chứng minh: KC đi qua trung điểm của HF
Cho (O; R) đường kính BC. Lấy điểm A trên (O) sao cho AB= R
a) TÍnh các góc A, B, C và cạnh AC của tam giác ABC theo R.
b) Đường cao AH của tam giác ABC cắt (O) tại D. chứng minh BC là trung trực của AD và tam giác ADC đều
c) Tiếp tuyến tại D của (O) cắt đường thẳng BC tại E. Chứng minh EA là tiếp tuyến cuta (O)
d) Chứng minh EB. CH = BH. EC