a) Xét ΔABH vuông tại H và ΔCAH vuông tại H có
\(\widehat{ABH}=\widehat{CAH}\left(=90^0-\widehat{ACH}\right)\)
Do đó: ΔABH\(\sim\)ΔCAH(g-g)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{36}+\dfrac{1}{64}=\dfrac{100}{2304}\)
hay AH=4,8(cm)