Tam giác ABC nhọn: BC=a; AC=b;AB=c. Chứng minh: \(\sin\frac{A}{2}\le\frac{a}{2\sqrt{bc}}\)
Cho tam giác ABC nhọn có AB=c, BC=a, CA=b. Chứng minh rằng:
a) \(\sin\frac{\widehat{A}}{2}\le\frac{a}{b+c}\)
b) \(\sin\frac{\widehat{B}}{2}\le\frac{b}{c+a}\)
c, \(\sin\frac{\widehat{C}}{2}\le\frac{c}{a+b}\)
d) \(\sin\frac{\widehat{A}}{2}.\sin\frac{\widehat{B}}{2}.\sin\frac{\widehat{C}}{2}\le\frac{1}{8}\)
Cho tam giác ABC nhọn và BC = a , CA = b , AB = c
CM:\(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\)
Bài 1 : cho tam giác ABC có góc A và B nhọn , các đg trung tuyến BM và CN vuông góc vs nhau tại G . CMR :\(cotB+cotC\ge\frac{2}{3}\)
Bài 2 : Cho tam giác ABC có 3 góc nhọn có BC=a, CA=b, AB=c. CMR :
a.\(a^2=b^2+c^2-2bc.cosA\)
b.\(sin\frac{A}{2}\le\frac{a}{b+c}\)
c.\(sin\frac{A}{2}.sin\frac{B}{2}.sin\frac{C}{2}\le\frac{1}{8}\)
Cho tam giác ABC nhọn với AB = c , AC = b , BC = a . Chứng minh :
\(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\)
Cho tam giác ABC có ba góc nhọn , vẽ đường AD và BE ,gọi H là Trực tâm của tam giác.
a)C/m \(\tan A\times\tan C=\frac{AD}{HD}\)
b)C/m \(DH\times DA\le\frac{BC^2}{4}\)
c)Gọi a,b,c lần lượt là độ dài các cạnh BC,AC,AB của tam giác ABC .C/m \(\sin\frac{A}{2}\le\frac{A}{2\sqrt{ab}}\)
cho tam giác ABC nhọn, BC=a, AC=b, AB=c
chứng minh:
\(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\)
Cho tam giác ABC , BC=a ,AC=b, AB=c. Cmr sin \(\frac{\widehat{A}}{2}\le\frac{a}{b+c}\)
Cho tam giác ABC, BC=a, AC=b, AB=c. Chứng minh \(Sin\frac{\widehat{A}}{2}\le\frac{a}{b+c}\)