
Hình bình hành ABCD có hai đường chéo bằng nhau, nên nó là hình chữ nhật, tức là tam giác ABC vuông.
Chọn A.

Hình bình hành ABCD có hai đường chéo bằng nhau, nên nó là hình chữ nhật, tức là tam giác ABC vuông.
Chọn A.
Trong các mệnh đề sau
a. Nếu tam giác ABC thỏa mãn AB2 + AC2 = BC2 thì tam giác ABC vuông tại B.
b. Nếu một phương trình bậc hai có biệt thức không âm thì nó có nghiệm.
c. Tam giác ABC là tam giác đều khi và chỉ khi nó thỏa mãn đồng thời hai điều kiện AB = AC và góc A = 600.
d. Hình thang cân có một trục đối xứng.
Các mệnh đề đúng là:
A. a, c.
B. a, b, c.
C. b, c.
D. b, c, d.
Tam giác ABC có trọng tâm G, độ dài các cạnh BC, CA, AB lần lượt là a, b, c. Khi đó ABC là tam giác đều nếu có điều kiện nào sau đây?
A. a G A → + b G B → + c G C → = 0 →
B. a G A → + b G B → - c G C → = 0 →
C. a G A → - b G B → + c G C → = 0 →
D. - a G A → + b G B → + c G C → = 0 →
Cho tam giacs ABC thỏa điều kiện S=\(\frac{\left(a+b-c\right)\left(a-b+c\right)}{4}\)
Chứng mịnh tam giác ABC vuông tại A
Cho tam giác ABC thỏa mãn điều kiện \(\frac{a}{bc}+\frac{1}{b}=\frac{1}{c}+\frac{1}{a+b-c}\)
CMR rằng góc A=60 độ
cho tam giác ABC thỏa mãn \(\sin^2A+\sin^2B=\sqrt{\sin C}\) và A, B là hai góc nhọn. chứng minh tam giác ABC vuông tại C
Cho tam giác ABC thỏa mãn hệ thức b + c = 2a. Trong các mệnh đề sau, mệnh đề nào đúng?
A. CosB + Cos C = 2 Cos A B. Sin B + Sin C = 2 Sin A
C. Sin B + Sin C = \(\dfrac{1}{2}SinA\) D. Sin B + Sin C = 2 Sin A
cho tam giác ABC thỏa mãn \(\sin^2A+\sin^2B=\sqrt{\sin C}\) và A, B là hai góc nhọn. chứng minh tam giác ABC vuông tại C
Cho tam giác ABC biết các cạnh a, b, c thỏa mãn hệ thức: a(a2 – c2) = b(b2 – c2). Tính góc C.
A. 300
B. 600
C. 900
D. 1200
Tam giác ABC có \(A=120^o\) thì khẳng định nào sau đây là đúng?
A. a^2 = b ^ 2 + c ^ 2 - bc
B. a^2 = b^2 + c^2 + 3bc
C. a^2 = b^2 + c^2 + bc
D. a^2 = b^2 + c^2 - 3bc
( ^2 có nghĩa là bình phương )