Ta có ab + ba = 10a + b + 10b + a = 11a + 11b = 11(a + b)
Để ab + ba là số chính phương
=> 11(a + b) là số chính phương
=> (a + b)\(⋮\)112k + 1 (k là số tự nhiên) (1)
Vì 2 < a + b < 18 (Vì 0 < a ; b < 10) (2)
Từ (1)(2) => a + b = 11
Lại có 11 = 5 + 6 = 7 + 4 + 8 + 3 = 9 + 2
=> Các cặp (a ; b) thỏa mãn là (5;6) ; (6;5) ; (7;4) ; (4;7) ; (8;3) ; (3;8) ; (9 ; 2) ; (2;9)
Ta có: \(\overline{ab}+\overline{ba}=a.10+b+b.10+a=11\left(a+b\right)\)
Vì a; b là số tự nhiên có 1 1 chữ số => 0 < a + b < 20
Để \(\overline{ab}+\overline{ba}=11\left(a+b\right)\)là số chính phương
<=> a + b = 11.k với k là số chính phương
=> 0 < 11k < 20 ; k là số chính phương
=> k = 1 => a + b = 11
Không mất tính tổng quát: g/s: a < b
+) Với a = 1 => b = 10 loại
+) Với a = 2 => b = 9
+) Với a = 3 => b = 8
+) Với a = 4 => b = 7
+) Với a = 5 => b = 6
Vây a = 2; b = 9 hoặc a = 3; b = 8 hoặc a = 4; b = 7 hoặc a = 5; b = 6 hoặc các hoán vị