a) \(\left(a+b\right).\left(a-b\right)=a.\left(a-b\right)+b.\left(a-b\right)=a^2-ab+ba-b^2\)\(=a^2-b^2\)
b) \(\left(a+b\right)^3=\left(a+b\right).\left(a+b\right).\left(a+b\right)=a.\left(a+b\right).\left(a+b\right)+b.\left(a+b\right).\left(a+b\right)\)
\(=\left(a^2+ab\right).\left(a+b\right)+\left(ba+b^2\right).\left(a+b\right)\)\(=a^2.\left(a+b\right)+ab.\left(a+b\right)+ba.\left(a+b\right)+b^2.\left(a+b\right)\)
\(=a^3+a^2b+a^2b+ab^2+ba^2+b^2a+b^2a+b^3\)\(=a^3+3a^2b+3ab^2+b^3\)
c) \(\left(a+b\right).\left(a^2-ab+b^2\right)=a.\left(a^2-ab+b^2\right)+b.\left(a^2-ab+b^2\right)\)
\(=a^3-a^2b+ab^2+ba^2-ab^2+b^3\)\(=a^3+b^3\)
d) \(\left(a-b\right).\left(a^2+ab+b^2\right)=a.\left(a^2+ab+b^2\right)-b.\left(a^2+ab+b^2\right)\)
\(=a^3+a^2b+ab^2-ba^2-ab^2-b^3\)\(=a^3-b^3\)
e) \(\left(a-b\right)^3=\left(a-b\right).\left(a-b\right).\left(a-b\right)=a.\left(a-b\right).\left(a-b\right)-b.\left(a-b\right).\left(a-b\right)\)
\(=\left(a^2-ab\right).\left(a-b\right)-\left(ba-b^2\right).\left(a-b\right)\)\(=a^2.\left(a-b\right)-ab.\left(a-b\right)-ba.\left(a-b\right)+b^2.\left(a-b\right)\)
\(=a^3-a^2b-a^2b+ab^2-ba^2+b^2a+b^2a-b^3\)
\(=a^3-3a^2b+3ab^2-b^3\)
1) (a+b).(a+b)=(a+b)2=a2+2ab+b2
2) (a-b)2=a2-2ab+b2
3) (a+b).(a-b)=a2-b2
4) (a+b)3=a3+3a2b+3ab2+b3
5) (a-b)3=a3-3a2b+3ab2-b3
6) (a+b).(a2-ab+b2)=a3+b3
7) (a-b).(a2+ab+b2)=a3-b3
a) ( a + b ) . ( a - b )
=a2-b2
b) ( a + b ) 3
=a3+3a2b+3ab2+b3
c) ( a + b ) . ( a2 - ab + b2 )
=a3+b3
d) ( a - b ) . ( a2 + ab + b2 )
=a3-b3
e) ( a - b )3
==a3-3a2b+3ab2-b3