Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
phamthiminhtrang

Sử dùng hằng đẳng thức , phân tích đa thức thành nhân tử :

\(\left(a+b\right)^3-\left(a-b\right)^3\)

\(x^3+y^3+z^3-3xyz\)

Arima Kousei
19 tháng 7 2018 lúc 9:06

\(\left(a+b\right)^3-\left(a-b\right)^3\)

\(=a^3+3a^2b+3ab^2+b^3-\left(a^3-3a^2b+3ab^2-b^3\right)\)

\(=a^3+3a^2b+3ab^2+b^3-a^3+3a^2b-3ab^2+b^3\)

\(=6a^2b+2b^3\)

\(=2b\left(3a^2+b^2\right)\)

Ahwi
19 tháng 7 2018 lúc 9:15

a/\(\left(a+b\right)^3-\left(a-b\right)^3\)

\(=\left(a^3+3a^2b+3ab^2+b^3\right)-\left(a^3-3a^2b+3ab^2-b^3\right)\)\(=a^3+3a^2b+3ab^2+b^3-a^3+3a^2b-3ab^2+b^2\)

\(=6ab^2+2b^3\)(rút gọn hết)

b/\(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3-3xy\left(x-y\right)+z^3-3xyz\)

\(=\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)^3-3z\left(x+y\right)\left(x+y+z\right)-3xy\left(x-y-z\right)\)

\(=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3z\left(x+y\right)-3xy\right]\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2+2xy-2xz+2xz+2xy-3xz-3yz-3xy\right).\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)

Hok tốt

Đường Quỳnh Giang
5 tháng 9 2018 lúc 23:06

\(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

๖ACE✪Hoàngミ★Việtツ
10 tháng 9 2018 lúc 17:15

Ta có :

\(x^3+y^3+z^3-3xyz\)

\(\Rightarrow\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(\Rightarrow\left(x+y+z\right)\left[\left(x+y^2\right)-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)

\(\Rightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

P/s tham khảo nha

hok tốt


Các câu hỏi tương tự
Kim Jennie
Xem chi tiết
Phúc Anh Quân
Xem chi tiết
chả pít
Xem chi tiết
chả pít
Xem chi tiết
Thanh Tu Nguyen
Xem chi tiết
Nguyễn Công Minh Hoàng
Xem chi tiết
Công chúa thủy tề
Xem chi tiết
Nàng tiên cá
Xem chi tiết
Hoàng Ngọc Tuyết Nhung
Xem chi tiết