ĐK: $\begin{cases}x^2-2x≥0\\2-x≥0\\\end{cases}$ `<=>` $\begin{cases}x≤0 \vee x ≥2\\x≤2\\\end{cases}$ ` <=> ` $\begin{cases}x≤0\\x=2\\\end{cases}$
`\sqrt(x^2-2x)=2-x`
`<=>x^2-2x=(x-2)^2`
`<=>x^2-2x=x^2-4x+4`
`<=>-2x=-4x+4`
`<=>x=2`
Vậy `S={2}`.
Ta có: \(\sqrt{x^2-2x}=2-x\)
\(\Leftrightarrow x^2-2x=x^2-4x+4\)
\(\Leftrightarrow-2x+4x=4\)
\(\Leftrightarrow2x=4\)
hay x=2