Chứng minh với a; b; c; d > 0
\(\sqrt{\left(a^2+c^2\right)\left(b^2+c^2\right)}+\sqrt{\left(a^2+d^2\right)\left(b^2+d^2\right)}\) \(\ge\) \(\left(a+b\right)\left(c+d\right)\)
CM : \(\sqrt{\left(a^2+c^2\right)\left(b^2+c^2\right)}+\sqrt{\left(a^2+d^2\right)\left(b^2+d^2\right)}\ge\left(a+b\right)\) \(\left(c+d\right)\) với a, b, c, d \(>\)0
Chứng minh rằng \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+b\right)^2+\left(c+d\right)^2}\)
Chứng minh BĐT
\(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)
\(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)
cm BĐT trên
Với a,c,b,d,e,f là số dương
CMR:
\(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}+\sqrt{e^2+f^2}\ge\sqrt{\left(a+c+e\right)^2+\left(b+d+f\right)^2}\)
CMR : \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}+\sqrt{m^2+n^2}\ge\sqrt{\left(a+c+m\right)^2+\left(b+d+n\right)^2}\)
( BĐT Bunhiakopski biến thể )
Với a,c,b,d,e,f là số dương
CMR:
\(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}+\sqrt{e^2+f^2}\ge\sqrt{\left(a+c+e\right)^2+\left(b+d+f\right)^2}\)
Chứng minh BĐT:
\(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\)\(\ge\)\(\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)