\(\sqrt{12}\)
=3,464101615
tk nhé
ai k mình mình k lại
\(\sqrt{9+3}\)
=3+3
=6
hoặc:
\(\sqrt{9+3}\)
=\(\sqrt{12}\)
=3,464101615
ai k mình mình k lại
de bai cho\(\sqrt{9+3}\)
=12 ta lay 9+3 =12
hoac\(\sqrt{12}\)
\(\sqrt{12}\)
=3,464101615
tk nhé
ai k mình mình k lại
\(\sqrt{9+3}\)
=3+3
=6
hoặc:
\(\sqrt{9+3}\)
=\(\sqrt{12}\)
=3,464101615
ai k mình mình k lại
de bai cho\(\sqrt{9+3}\)
=12 ta lay 9+3 =12
hoac\(\sqrt{12}\)
cho x=\(\left(\dfrac{\sqrt[3]{8-3\sqrt{5}}+\sqrt[3]{64-12\sqrt{20}}}{\sqrt[3]{57}}\right)\sqrt[3]{8+3\sqrt{5}}\);y=\(\left(\dfrac{\sqrt[3]{9}-\sqrt{2}}{\sqrt[3]{3}+\sqrt[4]{2}}+\dfrac{\sqrt{2}-9\sqrt[3]{9}}{\sqrt[4]{2}-\sqrt[3]{81}}\right)\)
a rút gọn x và y
b tính T = xy
Tính \(S=\sqrt[3]{26+15\sqrt{3}}\left(2-\sqrt{3}\right)+\sqrt[3]{9+\sqrt{80}}+\sqrt[3]{9-\sqrt{80}}\)
Tính: \(B=\frac{\sqrt[3]{9}-\sqrt{2}}{\sqrt[3]{3}+\sqrt[4]{2}}+\frac{\sqrt{2}-9\sqrt[3]{9}}{\sqrt[4]{2}-3\sqrt{81}}\)
Tính :
\(B=\frac{\sqrt[3]{9}-\sqrt{2}}{\sqrt[3]{3}+\sqrt[4]{2}}+\frac{\sqrt{2}-9\sqrt[3]{9}}{\sqrt[4]{2}-3\sqrt{81}}\)
\(\sqrt[3]{9+4\sqrt{5}}_{ }-\sqrt[3]{9-4\sqrt{5}}\) \(\sqrt[3]{70+\sqrt{4901}}-\sqrt[3]{70-\sqrt{4901}}\)
giúp mình với :((
chứng minh rằng
\(\sqrt[3]{\sqrt[3]{\sqrt{2}-1}}=\sqrt[3]{\frac{1}{9}}-\sqrt[3]{\frac{2}{9}}+\sqrt[3]{\frac{4}{9}}\)
Cmr:
\(\sqrt[3]{\sqrt[3]{2}-1}=\sqrt[3]{\dfrac{1}{9}}-\sqrt[3]{\dfrac{2}{9}}+\sqrt[3]{\dfrac{4}{9}}\)
Chứng minh: \(\sqrt[3]{\sqrt[3]{2}}-1=\sqrt[3]{\frac{1}{9}}-\sqrt[3]{\frac{2}{9}}+\sqrt[3]{\frac{4}{9}}\)
Tính:
i) \(\sqrt{8-3\sqrt{7}}+\sqrt{4-\sqrt{7}}\)
j) \(\sqrt{5+\sqrt{21}}-\sqrt{5-\sqrt{21}}\)
k) \(\sqrt{9-3\sqrt{5}}-\sqrt{9+3\sqrt{5}}\)
a) \(\sqrt{4x^2-9}=2\sqrt{x+3}\)
b) \(\sqrt{4x+20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)
c) \(\dfrac{2}{3}\sqrt{9x-9}-\dfrac{1}{4}\sqrt{16x-16}+27\sqrt{\dfrac{x-1}{81}}=4\)
d)\(5\sqrt{\dfrac{9x-27}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\)