\(\sqrt{4\left(a-3\right)^2}=2\sqrt{\left(a-3\right)^2}=2\left|a-3\right|=2\left(a-3\right)=2a-6\)
\(\sqrt{4\left(a-3\right)^2}=2\sqrt{\left(a-3\right)^2}=2\left|a-3\right|=2\left(a-3\right)=2a-6\)
giúp tui với
\(\left(\sqrt{10}+\sqrt{2}\right)\left(6-2\sqrt{5}\right)^2\sqrt{3+\sqrt{5}}\)
\(\dfrac{4-a^2}{48}\sqrt{\dfrac{36}{a^2-4a+4}}\left(a>2\right)\)
\(\sqrt[3]{4\left(a^3+b^3\right)}+\sqrt[3]{4\left(b^3+c^3\right)}+\sqrt[3]{4\left(a^3+c^3\right)}\ge2\left(a+b+c\right)\\ \)với a,b,c >0
rút gọn các biểu thức sau:
a) \(\sqrt{\left(2-\sqrt{3}\right)^2}\)
b) \(\sqrt{\left(3-\sqrt{11}\right)^2}\)
c) \(2\sqrt{a^2}\)với a ≥ 0
d) 3\(\sqrt{\left(a-2\right)^2}\)với a < 0
Bài 1: Chứng Minh Rằng : \(\sqrt[3]{\sqrt[3]{2}-1}\)= \(\sqrt[3]{\frac{1}{9}}-\sqrt[3]{\frac{2}{9}}+\sqrt[3]{\frac{4}{9}}\)
Bài 2: Rút gọn biểu thức:
A= \(\frac{a^3-3a+\left(a^2-1\right)\sqrt{a^2-4}-2}{a^3-3a+\left(a^2-1\right)\sqrt{a^2-4}+2}\)( với a>2)
B= \(\sqrt{\frac{1}{a^2+b^2}+\frac{1}{\left(a+b\right)^2}+\sqrt{\frac{1}{a^4}+\frac{1}{b^4}+\frac{1}{\left(a^2+b^2\right)^2}}}\)(ab # 0)
\(\left(\frac{1}{2}\sqrt[3]{20+14\sqrt{2}}\times\sqrt{6-4\sqrt{4}}+\frac{1}{2}\sqrt[3]{\left(a+3\right)\sqrt{a}-3a-1}\right)\div\left(\frac{a-1}{2\left(\sqrt{a}+1\right)}+1\right)\)
Bài 1: Rút gọn biểu thức:
\(A=\frac{a^3-3a+\left(a^2-1\right)\sqrt{a^2-4}-2}{a^3-3a+\left(a^2-1\right)\sqrt{a^2-4}+2}\left(a>2\right)\)
\(B=\sqrt{\frac{1}{a^2+b^2}+\frac{1}{\left(a+b\right)^2}+\sqrt{\frac{1}{a^4}+\frac{1}{b^4}+\frac{1}{\left(a^2+b^2\right)^2}}}\left(ab\ne0\right)\)
Bài 2: Tính giá trị của biểu thức:
\(E=\frac{1}{1\sqrt{2}+2\sqrt{1}}+\frac{1}{2\sqrt{3}+3\sqrt{2}}+\frac{1}{3\sqrt{4}+4\sqrt{3}}+...+\frac{1}{2017\sqrt{2018}+2018\sqrt{2017}}\)
Bài 3: Chứng minh rằng các biểu thức sau có gúa trị là số nguyên
\(A=\left(\sqrt{57}+3\sqrt{6}+\sqrt{38}+6\right)\left(\sqrt{57}-3\sqrt{6}-\sqrt{38}+6\right)\)
\(B=\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)
Rút gọn biểu thức: \(A=\frac{\sqrt{2+\sqrt{4-x^2}}\left[\sqrt{\left(2+x\right)^3}-\sqrt{\left(2-x\right)^3}\right]}{4+\sqrt{4-x^2}}\) với \(-2\le x\le2\)
Rút gọn
\(A=\frac{\sqrt{2+\sqrt{4-x^2}}\left[\sqrt{\left(2+x\right)^3}-\sqrt{\left(2-x\right)^3}\right]}{4+\sqrt{4-x^2}}\) với \(-2\le x\le2\)
Rút gọn:1,\(\sqrt{\left(x+2\sqrt{x+1}\right)\left(x+3+4\sqrt{x-1}\right)}\)
2,\(\sqrt{\left(\left(a^2\right)+\left(b^2\right)+\left(c^2\right)+2\left(ab+bc+ac\right)\right)\left(a+b-2\sqrt{ab}\right)}\)
3,\(\frac{2+a-2\sqrt{a}}{3+a-3\sqrt{a}}\)
28. A=\(\left(\dfrac{x-3\sqrt{x}}{x-9}-1\right):\left(\dfrac{9-x}{x+\sqrt{x}-6}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
a. rút gọn A
b. tính A với x = \(7-4\sqrt{3}\)
c. tìm x khi A=3