bn mũ 3 lên đc bao nhiêu đã
sau đó p/t thành nhân tử đặt nhân tử chung
hok tốt
PT <=> \(x+5+x+6=2x+11\)
\(2x+11=2x+11\Leftrightarrow0=0\)
Ta có: \(\sqrt[3]{x+5}+\sqrt[3]{x+6}=\sqrt[3]{2x+11}\)
\(\Leftrightarrow\sqrt[3]{x+5}+\sqrt[3]{x+6}=\sqrt[3]{2x+11}\)
\(\Leftrightarrow\left(\sqrt[3]{x+5}+\sqrt[3]{x+6}\right)^3=\left(\sqrt[3]{2x+11}\right)^3\)
\(\Leftrightarrow x+5+x+6+3.\sqrt[3]{x+5}.\sqrt[3]{x+6}.\left(\sqrt[3]{x+5}+\sqrt[3]{x+6}\right)=2x+11\)
\(\Leftrightarrow2x+11+3.\sqrt[3]{x+5}.\sqrt[3]{x+6}.\left(\sqrt[3]{x+5}+\sqrt[3]{x+6}\right)=2x+11\)
\(\Leftrightarrow3.\sqrt[3]{x+5}.\sqrt[3]{x+6}.\left(\sqrt[3]{x+5}+\sqrt[3]{x+6}\right)=0\)
+ \(\sqrt[3]{x +5}=0\)\(\Leftrightarrow\)\(x+5=0\)\(\Leftrightarrow\)\(x=-5\)\(\left(TM\right)\)
+ \(\sqrt[3]{x+6}=0\)\(\Leftrightarrow\)\(x+6=0\)\(\Leftrightarrow\)\(x=-6\)\(\left(TM\right)\)
+ \(\sqrt[3]{x+5}+\sqrt[3]{x+6}=0\)\(\Leftrightarrow\)\(\sqrt[3]{x+5}=-\sqrt[3]{x+6}\)
\(\Leftrightarrow\)\(\left(\sqrt[3]{x+5}\right)^3=\left(-\sqrt[3]{x+6}\right)^3\)
\(\Leftrightarrow\)\(x+5=-x-6\)
\(\Leftrightarrow\)\(2x=-11\)
\(\Leftrightarrow\)\(x=\frac{-11}{2}=-5,5\)\(\left(TM\right)\)
Vậy \(S=\left\{-6;-5,5;-5\right\}\)