\(\sqrt[3]{3x^2-x+2012}-\sqrt[3]{3x^2-6x-2013}-\sqrt[3]{5x-2014}=\sqrt[3]{2013}\)
Tìm x thỏa mãn: \(\sqrt[3]{3x^2-x+2011}-\sqrt[3]{3x^2-7x+2012}-\sqrt[3]{6x-2013}=\sqrt[3]{2012}\)
Giải Pt :
a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+........+\frac{1}{x\left(x+1\right)}=\frac{\sqrt{2012-x}+2012}{\sqrt{2012-x}+2013}\)
b) \(\sqrt{2x+3}+\sqrt{x+1}=3x+2\sqrt{2x^2+5x+3}-16\)
3x2013+5x2011+2006 với x=\(\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{\sqrt{2}+2\sqrt{3}+\sqrt{18-8\sqrt{2}}}}}-\sqrt{3}\)
Giải phương trình:
\(\dfrac{\sqrt{x-2012}-1}{x-2012}+\dfrac{\sqrt{y-2013}-1}{y-2013}+\dfrac{\sqrt{z-2014}-1}{z-2014}=\dfrac{3}{4}\)
Tính: \(3x^{2013}+5x^{2011}+2006\) . với \(x=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{\sqrt{2}+2\sqrt{3}+\sqrt{18+8\sqrt{2}}}}}-\sqrt{3}\)
Tính \(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{2013\sqrt{2012}+2012\sqrt{2013}}\)
. Giải các phương trình sau:
a, \(\sqrt{10x^2+3x+1}\) = (6x+1)\(\sqrt{x^2+3}\)
b, (4x-1)\(\sqrt{x^3+1}\)= \(2x^3+x^2+1\)
c, \(\sqrt[3]{3x^2-x+2010}-\sqrt[3]{3x^2-6x+2011}-\sqrt[3]{5x-2012}=\sqrt[3]{2011}\)
d, \(\sqrt[3]{1+7x}+\sqrt[3]{2x-1}=2\sqrt[3]{x}\)
e, \(\sqrt[3]{x^4-x^2}+x^2=2x+1\)
giai pt : a) \(\sqrt{\frac{2x+2}{x+2}}-\frac{\sqrt{x+2}}{\sqrt{2x+2}}=\frac{7}{12}\)
b) \(\frac{\sqrt{x-2012}-1}{x-2012}+\frac{\sqrt{y-2013}-1}{y-2013}+\frac{\sqrt{z-2014}-1}{z-2014}=\frac{3}{4}\)
c) \(3x^2+21x+18+2\sqrt{x^2+7x+7}\)= 2