GIẢI PT SAU:
\(\sqrt{3x-3}-\sqrt{5-x}=\sqrt{2x-4}\)
\(x^2-6x+9=4\sqrt{x^2-6x+6}\)
\(x^2-x+8-4\sqrt{x^2-x+4}=0\)
giải bất phương trình:
\(\sqrt{2x^2+26x+8}\le x+3\sqrt{x}+2\)
GIẢI PT SAU:
\(\sqrt{3x-3}-\sqrt{5-x}=\sqrt{2x-4}\)
\(x^2-6x+9=4\sqrt{x^2-6x+6}\)
1. \(\sqrt{2x^2+5x-6}>2-x\)x
2.\(\sqrt{x^2+2}\le x-1\)
3.\(\sqrt{x^2-2x-15}>2x+5\)
4.\(\left(16-x^2\right)\sqrt{x-3}\le0\)
5.\(\sqrt{x^2+2017}\le\sqrt{2018}x\)
6.\(\hept{\begin{cases}\frac{x+3}{2x-3}-\frac{x}{2x-1}\le0\\\sqrt{x^2+3}+3x< 1\end{cases}}\)
y = \(\sqrt{x^2-2x+5}\) - \(\sqrt[]{x^2+6x+10}\)
\(\sqrt{-x^2+6x-5}>8-2x\)
GIẢI CÁC PT SAU:
x2 - 6x + 9=\(4\sqrt{x^2-6x+6}\)
x2 - x + 8 - \(4\sqrt{x^2-x+4}=0\)
x2 + \(\sqrt{4x^2-12x+44}=3x+4\)
Giải pt:
\(\sqrt{x^2+10x+21}=3\sqrt{x+3}+2\sqrt{x+7}-6\)
\(4\left(x+1\right)^2=\left(2x+10\right)\left(1-\sqrt{3+2x}\right)^2\)
\(\frac{1}{1-\sqrt{1-x}}-\frac{1}{1+\sqrt{1-x}}=\frac{\sqrt{3}}{x}\)
\(\sqrt{x+3}+2x\sqrt{x+1}=2x+\sqrt{x^2+4x+3}\)
\(\sqrt{x-2}+\sqrt{4-x}=x^2-6x+11\)
Giải phương trình sau
1. \(5x^2-16x+7+\left(x+1\right)\sqrt{x^2+3x-1}=0\)
2. \(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)
\(\left(\frac{2x-1}{2-x}+2\sqrt{2-x}\right)^3=27\left(2x-1\right)\)
Giải phương trình nghiệm nguyên sau:
\(3x^3-13x^2+30x-4=\sqrt{\left(6x+2\right)\left(3x-4\right)^3}\)