Ta có: \(\sqrt{18}-\frac{1}{3}\sqrt{72}-\sqrt{8}+\frac{2-3\sqrt{2}}{3-\sqrt{2}}\)
\(=3\sqrt{2}-\frac{6\sqrt{2}}{3}-2\sqrt{2}+\frac{\left(3+\sqrt{2}\right)\left(2-3\sqrt{2}\right)}{9-2}\)
\(=3\sqrt{2}-2\sqrt{2}-2\sqrt{2}-\sqrt{2}\)
\(=-2\sqrt{2}\)
Ta có: \(\sqrt{18}-\frac{1}{3}\sqrt{72}-\sqrt{8}+\frac{2-3\sqrt{2}}{3-\sqrt{2}}\)
\(=3\sqrt{2}-\frac{6\sqrt{2}}{3}-2\sqrt{2}+\frac{\left(3+\sqrt{2}\right)\left(2-3\sqrt{2}\right)}{9-2}\)
\(=3\sqrt{2}-2\sqrt{2}-2\sqrt{2}-\sqrt{2}\)
\(=-2\sqrt{2}\)
TRục căn thức ở mẫu A =\(\frac{1}{\sqrt{2}+\sqrt{3}-\sqrt{6}}\)
Trục căn thức ở mẫu :
f) \(\dfrac{2}{\sqrt{6}-\sqrt{5}}\)
l) \(\dfrac{3}{\sqrt{10}+\sqrt{7}}\)
m) \(\dfrac{1}{\sqrt{x}-\sqrt{y}}\) (\(x>0;y>0;x\ne y\))
Trục căn thức ở mẫu : \(\frac{1}{\sqrt{10}+\sqrt{15}+\sqrt{14}+\sqrt{21}}\)
Đề : Trục căn thức ở mẫu
a) \(\dfrac{5}{\sqrt{10}}\) b) \(\dfrac{5}{2\sqrt{5}}\) c) \(\dfrac{1}{3\sqrt{20}}\)
d) \(\dfrac{2\sqrt{2}+2}{5\sqrt{2}}\) e) \(\dfrac{y+b\sqrt{y}}{b\sqrt{y}}\) (với \(b\ge0\) và\(b\ne0\) )
A=\(\frac{1}{\sqrt{2}+\sqrt[3]{4}}\)
Trục căn thức của biểu thức đã cho trên.
Đề : Trục căn thức ở mẫu
f) \(\dfrac{2}{\sqrt{6}-\sqrt{5}}\) l) \(\dfrac{3}{\sqrt{10}+\sqrt{7}}\) m) \(\dfrac{1}{\sqrt{x}-\sqrt{y}}\) ( x>0 ,y>0,\(x\ne y\) )
o) \(\dfrac{2ab}{\sqrt{a}-\sqrt{b}}\) (\(a\ge0,b\ge0,a\ne b\))
P) \(\dfrac{P}{2\sqrt{P}-1}\) (\(P\ge0\) , \(P\ne\dfrac{1}{4}\))
\(\frac{\sqrt{x}-\sqrt{4y}}{\sqrt{x}+\sqrt{y}}+\frac{3x}{x+\sqrt{xy}}\)
trục căn thức
1) Khử mẫu các biểu thức dưới dấu căn rồi thực hiện phép tính:
\(2\sqrt{\frac{3}{20}}+\sqrt{\frac{1}{60}}-\sqrt{\frac{1}{15}}\)
2) Trục căn thức ở mẫu:
a) \(\frac{9}{\sqrt{3}}\)
b) \(\frac{12}{3-\sqrt{3}}\)
c) \(\frac{\sqrt{2}+1}{\sqrt{2}-1}\)
d) \(\frac{7\sqrt{3}-5\sqrt{11}}{8\sqrt{3}-7\sqrt{11}}\)
e) \(\frac{1-a\sqrt{a}}{1-\sqrt{a}}\)
f) \(\frac{1}{\sqrt{18}+\sqrt{8}-2\sqrt{2}}\)
g) \(\frac{1}{1+\sqrt{2}-\sqrt{3}}\)
h) \(\frac{1}{\sqrt{2}+\sqrt{3}-\sqrt{5}}\)
thực hiện phép tính:
a) \(-\sqrt{27}+6\sqrt{\frac{1}{3}}-\sqrt{12}\)
b) \(\sqrt{\frac{72}{9}}:\sqrt{18}-\frac{5}{6}\)
c) \(\frac{2}{3}\sqrt{3}-\frac{1}{4}\sqrt{18}+\frac{2}{5}\sqrt{2}-\frac{1}{4}\sqrt{12}\)