\(=\sqrt{16-2\cdot4\cdot\sqrt{3}}=\sqrt{16-2\cdot2\sqrt{3}\cdot2}=2\sqrt{3}-2\)
\(=\sqrt{16-2\cdot4\cdot\sqrt{3}}=\sqrt{16-2\cdot2\sqrt{3}\cdot2}=2\sqrt{3}-2\)
rút gọn các biểu thức sau:
a \(\sqrt[3]{8\sqrt{5}-16}.\sqrt[3]{8\sqrt{5}+16}\)
b \(\sqrt[3]{7-5\sqrt{2}}-\sqrt[6]{8}\)
c \(\sqrt[3]{4}.\sqrt[3]{1-\sqrt{3}}.\sqrt[6]{4+2\sqrt{3}}\)
d \(\dfrac{2}{\sqrt[3]{3}-1}-\dfrac{4}{\sqrt[3]{9}-\sqrt[3]{3}+1}\)
Tính \(a=\sqrt[3]{16-8\sqrt{5}}+\sqrt[3]{16+8\sqrt{5}}\)
Tinh: a= \(\sqrt[3]{16-8\sqrt{5}}\)+\(\sqrt[3]{16+8\sqrt{5}}\)
\(\frac{3}{\sqrt{4}+\sqrt{8}}+\frac{3}{\sqrt{8}+\sqrt{12}}+\frac{3}{\sqrt{12}+\sqrt{16}}+...+\frac{3}{\sqrt{572}+\sqrt{576}}.\)
a \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
b \(\sqrt{\dfrac{2a}{3}}.\sqrt{\dfrac{3a}{8}}\) với a>0
c \(\sqrt{5a.45a}-3a\) với a<0
\(\left(\dfrac{\sqrt{18}+\sqrt{16}}{\sqrt{6}}+\dfrac{\sqrt{8}}{\sqrt{2}}\right).\left(3+\dfrac{3-\sqrt{\sqrt{3}}}{1-\sqrt{3}}\right)\)
\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(\sqrt{16+4\sqrt{15}}-\sqrt{8-4\sqrt{3}}-\sqrt{3-\sqrt{5}}\)
giải hộ mik
a)\(\sqrt{11+6\sqrt{2}}-\left(3+\sqrt{2}\right)\)
b)\(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
rút gọn: \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)