Giải phương trình:
\(\sqrt{10+\sqrt{24}+\sqrt{40}\sqrt{60}}=2006\left(2x-1\right)+\sqrt{2}+\sqrt{3}+\sqrt{5}\)
Thực hiện phép tính
a) (\(2\sqrt{3}-\sqrt{2}\))2+\(2\sqrt{24}\)
b) \(\left(3\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+2\sqrt{3}\right)-\sqrt{60}\)
Chứng tỏ rằng
\(\frac{2}{3\left(1+\sqrt{2}\right)}+\frac{2}{5\left(\sqrt{2}+\sqrt{3}\right)}+\frac{2}{7\left(\sqrt{3}+\sqrt{4}\right)}+...+\frac{2}{4011\left(\sqrt{2005}+\sqrt{2006}\right)}<1-\frac{1}{\sqrt{2006}}\)
1.Tìm điều kiện xác định của mỗi biểu thức sau:
D= 3 - \(\sqrt{1-16x^2}\)
F= \(\sqrt{8x-x^2-15}\)
2. Rút gọn biểu thức
D=\(\sqrt{94-42\sqrt{5}}-\sqrt{94+42\sqrt{5}}\)
E=\(\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}\)
F=\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
G=\(\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}\)
H= \(\sqrt{10+\sqrt{60}-\sqrt{24}-\sqrt{40}}\)
I=\(\sqrt{6+\sqrt{24}+\sqrt{12}+\sqrt{8}}\)
K= \(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{25\sqrt{24}+24\sqrt{25}}\)
M=\(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
N=\(\frac{1+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{1-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
Chứng tỏ rằng
\(\frac{2}{3\left(1+\sqrt{2}\right)}+\frac{2}{5\left(\sqrt{2}+\sqrt{3}\right)}+\frac{2}{7\left(\sqrt{3}+\sqrt{4}\right)}+...+\frac{2}{4011\left(\sqrt{2005}+\sqrt{2006}\right)}<1-\frac{1}{\sqrt{2006}}\)
chứng tỏ rằng :
\(\frac{2}{3\left(1+\sqrt{2}\right)}+\frac{2}{5\left(\sqrt{2}+\sqrt{3}\right)}+\frac{2}{7\left(\sqrt{3}+\sqrt{4}\right)}+...\frac{2}{4011\left(\sqrt{2005}+\sqrt{2006}\right)}
1) Giải phương trình
a) \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\frac{x+3}{2}\)
b) \(x^2-8x+18=\sqrt{2x-7}+\sqrt{9-2x}\)
2) rút gọn
a) M = \(\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{3}-2\right)\sqrt{\sqrt{3}+2}\)
b) N= \(\sqrt{10+\sqrt{27}+\sqrt{40}+\sqrt{60}}\)
c) C = \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)
Thực hiện phép tính:
a/ \(\left(2\sqrt{3}-3\sqrt{2}\right)^2+2\sqrt{6}+3\sqrt{24}\)24
b/ \(\left(3\sqrt{5}-2\sqrt{3}\right)\sqrt{5}+\sqrt{60}\)
Bài 1: Rút gọn
a. \(\left(5-2\sqrt{3}\right)^2+\left(5+2\sqrt{3}\right)^2\)
b. \(\left(\sqrt{5}+\sqrt{2}\right)^2-\left(2\sqrt{5}+1\right)\left(2\sqrt{5}-1\right)-\sqrt{40}\)
c. \(\left(\sqrt{2}-1\right)^2-\frac{2}{3}\sqrt{4}+\frac{4\sqrt{2}}{5}+\sqrt{1\frac{11}{15}}-\sqrt{2}\)
d. \(\left(\sqrt{6}-\sqrt{18}+5\sqrt{2}-\frac{1}{2}\sqrt{8}\right)2\sqrt{6}+2\sqrt{3}\)
e. \(\left(2\sqrt{3}-3\sqrt{2}\right)^2+6\sqrt{6}+3\sqrt{24}\)
Bài 2: Rút gọn
A =\(\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}:\frac{\sqrt{x+1}}{x-2\sqrt{x}+1}\right)\)(x>0 ; x khác 1)