Cho dãy số u n thỏa mãn u n = u n - 1 + 6 , ∀ n ⩾ 2 và log 2 u 5 + log 2 u 9 + 8 = 11 . Đặt S n = u 1 + u 2 + . . . + u n . Tìm số tự nhiên n nhỏ nhất thỏa mãn S n ⩾ 20172018 .
A. 2587.
B. 2590.
C. 2593.
D. 2584.
Cho dãy số ( a n ) thỏa mãn 5 a n + 1 - a n = 3 3 n + 2 với mọi n ≥ 1. Tìm số nguyên dương n > 1 nhỏ nhất để a n là một số nguyên.
A. n = 41
B. n = 39
C. n = 49
D. n = 123
Cho dãy số a n thỏa mãn a 1 = 1 và 5 a n + 1 - a n - 1 = 3 3 n + 2 , với mọi n ≥ 1 . Tìm số nguyên dương n > 1 nhỏ nhất để a n là một số nguyên
A. n = 41
B. n = 39
C. n = 49
D. n = 123
Cho dãy số a n thỏa mãn a 1 = 1 và 5 a n + 1 - a n = 3 3 n + 2 , với mọi n ≥ 1 . Tìm số nguyên dương n > 1 nhỏ nhất để a n là một số nguyên
A. n = 41
B. n = 39
C. n = 49
D. n = 123
Cho f ( n ) = ( n 2 + n + 1 ) 2 ∀ n ∈ N * Đặt u n = f ( 1 ) . f ( 3 ) . . . f ( 2 n - 1 ) f ( 2 ) . f ( 4 ) . . . f ( 2 n ) .
Tìm số n nguyên dương nhỏ nhất sao cho u n thỏa mãn điều kiện log 2 u n + u n < - 10239 1024 .
A. n=23
B. n=29
C. n=21
D. n=33
Cho f ( n ) = ( n 2 + n + 1 ) 2 v ớ i ∀ n ∈ N * . Đặt u n = f ( 1 ) . f ( 3 ) . . . f ( 2 n - 1 ) f ( 2 ) . f ( 4 ) . . . f ( 2 n ) .
Tìm số n nguyên dương nhỏ nhất sao cho u n , thỏa mãn điều kiện log 2 u n + u n < - 10239 1024 .
A. n = 23
B. n = 29
C. n = 21
D. n = 33
n là số nguyên dương và k là tích của tất cả các số nguyên từ 1 đến n. Nếu k là bội số của 1440 thì giá trị nhỏ nhất có thể có của n là A. 8 B. 12 C. 16 D. 18 E. 24
Xét các số thực a, b thỏa mãn 1 4 < b < a < 1 Biểu thức P = log a ( b - 1 4 ) - log a b b đạt giá trị nhỏ nhất khi
A. log a b = 1 3
B. log a b = 2 3
C. log a b = 3 2
D. log a b = 3
Cho dãy số ( u n ) thỏa mãn log u 1 + 2 + log u 1 - 2 log u 10 = 2 log u 10
và u n + 1 = 2 u n với mọi n ≥ 1 Giá trị nhỏ nhất của n đề u n > 5 100 bằng
A. 247
B. 248
C. 229
D. 290