\(\frac{\left(x+y\right)^3}{x^2-y^2}\)
\(\frac{\left(x^2-xy+y^2\right)}{x-y}=\frac{\left(x+y\right)\left(x^2-xy+y^2\right)}{\left(x+y\right)\left(x-y\right)}=\frac{x^3+y^3}{x^2-y^2}\)
Vì x > y > 0 => x^3 + y^3 < ( x+ y)^3
=> \(\frac{x^3+y^3}{x^2+y^2}\frac{x^2-xy+y^2}{x-y}\)