Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
trần hiếu

so sánh

\(\sqrt{2005}+\sqrt{2007}\)   và  \(2\sqrt{2006}\)

cách giải nha

 

Hoàng Lê Bảo Ngọc
18 tháng 9 2016 lúc 16:32

Áp dụng \(\sqrt{\frac{a+b}{2}}>\frac{\sqrt{a}+\sqrt{b}}{2}\) được \(\sqrt{\frac{2007+2005}{2}}>\frac{\sqrt{2005}+\sqrt{2007}}{2}\Rightarrow2\sqrt{2006}>\sqrt{2005}+\sqrt{2007}\)

Huỳnh Diệu Bảo
18 tháng 9 2016 lúc 15:53

\(A=\sqrt{2005}+\sqrt{2007}\Rightarrow A^2=\left(\sqrt{2005}+\sqrt{2007}\right)^2=2005+2007+2\sqrt{2005\cdot2007}=4012+2\sqrt{\left(2006-1\right)\left(2006+1\right)}=4012+2\sqrt{2006^2-1}\)

\(B=2\sqrt{2006}\Rightarrow B^2=\left(2\sqrt{2006}\right)^2=4\cdot2006=2\cdot2006+2\cdot2006=4012+2\sqrt{2006^2}\)

Ta thấy \(4012=4012\) và \(\sqrt{2006^2-1}< \sqrt{2006^2}\)
nên \(A^2< B^2\)\(\Rightarrow\sqrt{2005}+\sqrt{2007}< 2\sqrt{2006}\)
 

Phạm Trần Minh Ngọc
18 tháng 9 2016 lúc 16:11

Có \(\sqrt{2005}+\sqrt{2007}=2005+2007+2\sqrt{2005\cdot2007}\)

                                            \(=2005+2007+2\sqrt{\left(2006-1\right)\left(2006+1\right)}\)

                                            \(=4012+2\sqrt{2006^2-1}\)

\(2\sqrt{2006}=2006+2006+2\cdot2006\)

                   \(=4012+2\sqrt{2006^2}\)

Mà \(4012+2\sqrt{2006^2-1}< 4012+2\sqrt{2006^2}\)

\(\Rightarrow\sqrt{2005}+\sqrt{2007}< 2\sqrt{2006}\)


Các câu hỏi tương tự
Valerie Jules
Xem chi tiết
Nguyễn Thị Thương
Xem chi tiết
Tiểu thư sky
Xem chi tiết
Trần Ngân Hà
Xem chi tiết
vy tường
Xem chi tiết
Trần Hoàng Uyên Nhi
Xem chi tiết
Arceus Official
Xem chi tiết
Nguyễn Quang Linh
Xem chi tiết
Hà Tuấn Lâm
Xem chi tiết