Ta có công thức :
\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)
Áp dụng vào ta có :
\(A=\frac{10^{12345}+1}{10^{12346}+1}< \frac{10^{12345}+1+9}{10^{12346}+1+9}=\frac{10^{12345}+10}{10^{12346}+10}=\frac{10\left(10^{12344}+1\right)}{10\left(10^{12345}+1\right)}=\frac{10^{12344}+1}{10^{12345}+1}=B\)
\(\Rightarrow\)\(A< B\)
Vậy \(A< B\)
Chúc bạn học tốt ~
Ta có : A = \(\frac{10^{12345}+1}{10^{12346}+1}< 1\)
=> A < \(\frac{10^{12345}+1+9}{10^{12346}+1+9}=\frac{10^{12345}+10}{10^{12346}+10}=\frac{10^{12344}+1}{10^{12345}+1}\)= B
Vậy A < B