\(A=2^0+2^1+2^2+2^3+...+2^{2010}\)
\(A=1+2+2^2+2^3+...+2^{2010}\)
\(2A=2+2^2+2^3+...+2^{2011}\)
\(2A-A=\left[2+2^2+2^3+...+2^{2011}\right]-\left[1+2+2^2+2^3+...+2^{2010}\right]\)
\(A=2^{2011}-1\)
Mà \(B=2^{2011}-1\)
=> A = B
Ta có: A=\(2^0+2^1+2^2+2^3+...+2^{2010}\)
2A=\(2^1+2^2+2^3+2^4+...+2^{2011}\)
2A-A hay A=\(2^{2011}-2^0\)
=\(2^{2011}-1\)
Vì \(2^{2011}-1=2^{2011}-1\)
\(\Rightarrow\)A=B
Hok tốt nha!!!
`A``=``2^0``+`2^1``+``2^2``+`2^3``+`...`+``2^(2010)`
`2A=2^1+2^2+2^3+2^4+...+2^(2011)`
`2A-A=(2^1+2^2+2^3+2^4+...+2^(2011))-(2^0+2^1+2^2+2^3+...+2^(2010)`
`A=2^(2011)-1`
`A=B`