\(5^{333}=\left(5^3\right)^{111}=125^{111}\)\(;\)\(3^{555}=\left(3^5\right)^{111}=243^{111}\)
\(Do\)\(125^{111}< 243^{111}\)\(nên\)\(5^{333}< 3^{555}\)
\(5^{333}\)và \(3^{555}\)
\(=\left(5^3\right)^{111}\)và \(=\left(3^5\right)^{111}\)
\(=125^{111}\)và \(243^{111}\)
Vì 243 > 125 nên \(3^{555}>5^{333}\)
5333=53x111=125111
3555=35x111=243111
Vì 125111 < 243111 => 5333<3555
Ta có:
5333 = (53)111 = 125111
3555 = (35)111 = 243111
Vì 125111 < 243111
=> 5333 < 3555