Ta có : \(15^{15}=3^{15}.5^{15}\)
\(81^3.125^5=3^{12}.5^{15}\)
Ta thấy : \(5^{15}=5^{15}\)
mà : \(3^{15}>3^{12}\)
\(=>15^{15}>81^3.125^5\)
Ta có:
1515 = 315.515
813.1255 = (34)3.(53)5 = 312.515
Vì 315.515 > 312.515
=> 1515 > 813.1255
Ta có:
\(15^{15}=\left(3\times5\right)^{15}=3^{15}\times5^{15}\)
\(81^3\times125^5=\left(3^4\right)^3\times\left(5^3\right)^5=3^{12}\times5^{15}\)
Vì \(3^{15}\times5^{15}>3^{12}\times5^{15}\);
nên\(15^{15}>81^3\times125^5\)