10^50=10^50
2^100=(2^2)^50=4^50
Vậy 10^50>2^100
Ta có : X = 3 + 32 + 33 + 34 +...+ 3100
=> 3X = 32 + 33 + 34 +...+ 3101
=> 3X - X = 3101 - 3
=> 2X = 3101 - 3
=> 2X + 3 = 3101
=> y = 101
2100=(22)50=450
Vì 50 = 50 và 10>4 => 1050 > 450 => 1050 > 2100.
x=3+32+33+34+...+3100
=> 3x = 32+33+34+...+3101
=> 3x - x = 32+33+34+...+3101 - (3+32+33+34+...+3100)
=>2x = 3101 - 3
=>2x + 3 = 3101
=> y = 101
\(10^{50}=10^{50}\)
\(2^{100}=\left(2^2\right)^{50}=4^{50}\)
vi \(4< 10\)nen \(4^{50}< 10^{50}\)
vay \(10^{50}>2^{100}\)
Ta có X=3+3²+3³+3⁴+.... +3^100
=> 3X-X=3²+3³+3⁴+...... +3^101
=>2X=3^101-3
=>101=2X+3
=>y=101
X = 3 + 32 + 33 + 34 +...+ 3100
=> 3X = 32 + 33 + 34 +...+ 3101
=> 3X - X = 3101 - 3
=> 2X = 3101 - 3
=> 2X + 3 = 3101
=> y = 101