\(N=\frac{101^{103}+1}{101^{104}+1}<\frac{101^{103}+1+100}{101^{104}+1+100}=\frac{101^{103}+101}{101^{104}+101}=\frac{101\left(101^{102}+1\right)}{101\left(101^{103}+1\right)}=\frac{101^{102}+1}{101^{103}+1}\)
=> N < M
Nhân M và N với 101 ta đc :
101M = \(\frac{101^{103}+101}{101^{103}+1}=\frac{101^{103}+1+100}{101^{103}+1}=1+\frac{100}{101^{103}+1}\)
101N = \(\frac{101^{104}+101}{101^{104}+1}=\frac{101^{104}+1+100}{101^{104}+1}=1+\frac{100}{101^{104}+1}\)
Vì \(101^{103}+1<101^{104}+1\Rightarrow\frac{100}{101^{103}+1}>\frac{100}{101^{104}+1}\)
=> 101M > 101N => M > N.
k nha bạn