\(M=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(M=1-\frac{1}{50}\)
\(\Rightarrow1>M\)
Ta có: 1/1.2+1/2.3+...+1/49.50
= 1-1/2+1/2-1/3+...+1/49-1/50
= 1-1/50
Ta có: 1-1/50 < 1 (luôn luôn đúng)
=> M<1
Ta có: 1/1.2+1/2.3+...+1/49.50
= 1-1/2+1/2-1/3+...+1/49-1/50
= 1-1/50
Ta có: 1-1/50 < 1
=> M<1
Tỉ ơi tích cho Đệ cái nha !!!
\(M=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{49\cdot50}\)
\(M=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(M=1-\frac{1}{50}\)
\(M=\frac{49}{50}\)
Vì \(\frac{49}{50}\) < 1
\(\Rightarrow\)\(M<1\)
M=1/1.2+1/2.3+1/3.4+...+1/49.50
=1-1/2+1/2-1/3+1/3-1/4+....+1/49-1/50
M=1-1/50
SUY RA M<1
M=1/1.2+1/2.3+1/3.4+...+1/49.50=1-1/2+1/2-1/3+1/3-1/4+...+1/49-1/50
M=1-1/50
SUY RA M<1
Theo bài ra ta có : \(M=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}=\frac{49}{50}\)
mà \(\frac{49}{50}< 1\Rightarrow M< 1\)