A = \(\dfrac{3}{4}\) + \(\dfrac{3}{9}\) + \(\dfrac{3}{16}\) + \(\dfrac{3}{25}\) +..............+ \(\dfrac{3}{(3n)^2}\)
A = ( \(\dfrac{3}{4}\) + \(\dfrac{3}{9}\) + \(\dfrac{3}{16}\)+ \(\dfrac{3}{25}\)) +.....+ \(\dfrac{3}{(3n)^2}\)
A = 3. ( \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{5^2}\))+............+ \(\dfrac{3}{(3n)^2}\)
A = 3.( \(\dfrac{1}{2.2}\) + \(\dfrac{1}{3.3}\) + \(\dfrac{1}{4.4}\) + \(\dfrac{1}{5.5}\)) +............+ \(\dfrac{3}{(3n)^2}\)
Vì \(\dfrac{1}{2}\) > \(\dfrac{1}{3}\) > \(\dfrac{1}{4}\) > \(\dfrac{1}{5}\)Ta có : \(\dfrac{1}{2.2}>\dfrac{1}{2.3}>\dfrac{1}{3.3}>\dfrac{1}{3.4}>\dfrac{1}{4.4}>\dfrac{1}{4.5}>\dfrac{1}{5.5}>\dfrac{1}{5.6}\)
A > 3. ( \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + \(\dfrac{1}{5.6}\)) + ............+ \(\dfrac{1}{(3n)^2}\)
A > 3. ( \(\dfrac{1}{2}\) - \(\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\)) +.....+ \(\dfrac{1}{(3n)^2}\)
A > 3.( \(\dfrac{1}{2}\) - \(\dfrac{1}{6}\)) +..............+ \(\dfrac{1}{(3n)^2}\)
A > 3. \(\dfrac{1}{3}\) +...............+ \(\dfrac{1}{(3n)^2}\)
A > 1 +..........+ \(\dfrac{1}{9n^2}\) > 1
A > 1