\(5^{36}=\left(5^3\right)^{12}=125^{12}\)
\(11^{24}=\left(11^2\right)^{12}=121^{12}\)
Do \(125>121\Rightarrow125^{12}>121^{12}\Rightarrow5^{36}>11^{24}\)
5^36=(5^3)^12=125^12
11^24=(11^2)^12=121^12
Suy ra 5^36>11^24
\(5^{36}=5^{3.12}=\left(5^3\right)^{12}=125^{12.}\)
\(11^{24}=11^{2.12}=\left(11^2\right)^{12}=121^{12}\)
Vì \(125^{12}>121^{12}\)
=> \(5^{36}>11^{24}\)