c) \(\frac{3065}{3054}=\frac{3054+11}{3054}=1+\frac{11}{3054}\)
\(\frac{4097}{4086}=\frac{4086+11}{4086}=1+\frac{11}{4086}\)
Mà: \(\frac{11}{3054}>\frac{11}{4086}\)
\(\Rightarrow1+\frac{11}{3054}>1+\frac{11}{4086}\)
\(\Rightarrow\frac{3065}{3054}>\frac{4097}{4086}\)
a, 1996.1999 < 1997.1998
b, 7001/7002 > 9003/9005 đặt phét tính r nhìn đuôi nhân vs nhau là biết ngay
c, 3065/3054 > 4097/4086 nhân 2 số đuôi
a) \(1996.1999=\left(1997-1\right)1999=1999.1997-1999\)
\(1997.1998=1997.\left(1999-1\right)=1997.1999-1997\)
Mà: \(\hept{\begin{cases}1999.1997=1997.1999\\-1999< -1997\end{cases}}\)
\(\Rightarrow1999.1997-1999< 1997.1999-1997\Rightarrow1996.1999< 1997.1998\)
b) \(\frac{7001}{7002}=\frac{7002-1}{7002}=1-\frac{1}{7002}\)
\(\frac{9003}{9005}=\frac{9005-5}{9005}=1-\frac{5}{9005}=1-\frac{1}{1801}\)
Mà: \(-\frac{1}{7002}>-\frac{1}{1801}\)
\(\Rightarrow1-\frac{1}{7002}>1-\frac{1}{1801}\)
\(\Rightarrow\frac{7001}{7002}>\frac{9003}{9005}\)