Ta có: \(1990^2\cdot A=\frac{1990^{82}+3\cdot1990^2}{1990^{82}+3}=\frac{1990^{82}+3+3\cdot\left(1990^2-1\right)}{1990^{82}+3}=1+\frac{3\cdot\left(1990^2-1\right)}{1990^{82}+3}\)
\(1990^2\cdot B=\frac{1990^{62}+3\cdot1990^2}{1990^{62}+3}=\frac{1990^{62}+3+3\left(1990^2-1\right)}{1990^{62}+3}=1+\frac{3\left(1990^2-1\right)}{1990^{62}+3}\)
Ta có: \(1990^{82}+3>1990^{62}+3\)
=>\(\frac{3\left(1990^2-1\right)}{1990^{82}+3}<\frac{3\left(1990^2-1\right)}{1990^{62}+3}\)
=>\(\frac{3\left(1990^2-1\right)}{1990^{82}+3}+1<\frac{3\left(1990^2-1\right)}{1990^{62}+3}+1\)
=>\(1990^2\cdot A<1990^2\cdot B\)
=>A<B