Ta có:
\(A=1+2+2^2+...+2^{50}\)
=>\(2A=2\left(1+2+2^2+...+2^{50}\right)\)
=>\(2A=2+2^2+2^3+...+2^{51}\)
=>\(2A-A=\left(2+2^2+2^3+...+2^{51}\right)-\left(1+2+2^2+...+2^{50}\right)\)
=>\(A=2^{51}-1\)
Vì \(2^{51}-1< 2^{51}\) nên A<B
a, Lấy A-B
= 1+2+....+2^49+2^50 - 2^51
= 1+2+....+ 2^49+ 2^50 . ( 1-2)
= 1+2+.....+ 2^49 - 2^50
= 1+2+....+2^48 - 2^49
......
......
= 1+2+2^2-2^3
= 1+2-2^2
= 1-2 = -1 <0 ===> A<B
a, Lấy A-B
= 1+2+....+2^49+2^50 - 2^51
= 1+2+....+ 2^49+ 2^50 . ( 1-2)
= 1+2+.....+ 2^49 - 2^50
= 1+2+....+2^48 - 2^49
......
......
= 1+2+2^2-2^3
= 1+2-2^2
= 1-2 = -1 <0 ===> A<B
\(\text{Ta có: }\)\(A=1+2+2^2+...+2^{50}\)
\(\Rightarrow2A=2\left(1+2+2^2+...+2^{50}\right)\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{51}\)
\(\Rightarrow2A-A=2^{51}-1\)
\(\Rightarrow A=2^{51}-1\)
Mà B = 251 nên A < B