Sửa đề
Có: \(A=\dfrac{1}{7^2}-\dfrac{1}{7^4}+\dfrac{1}{7^6}-\dfrac{1}{7^8}+...+\dfrac{1}{7^{98}}-\dfrac{1}{7^{100}}\)
\(7^2A=1-\dfrac{1}{7^2}+\dfrac{1}{7^4}-\dfrac{1}{7^6}+...+\dfrac{1}{7^{96}}-\dfrac{1}{7^{98}}\)
\(7^2A+A=1-\dfrac{1}{7^2}+\dfrac{1}{7^4}-\dfrac{1}{7^6}+...+\dfrac{1}{7^{96}}-\dfrac{1}{7^{98}}+\left(\dfrac{1}{7^2}-\dfrac{1}{7^4}+\dfrac{1}{7^6}-\dfrac{1}{7^8}+...+\dfrac{1}{7^{98}}-\dfrac{1}{7^{100}}\right)\)\(\Rightarrow50A=1-\dfrac{1}{7^{100}}< 1\)
\(\Rightarrow A< \dfrac{1}{50}\left(đpcm\right)\)
P/s: từ sau viết đề cẩn thạn vào