xét A và B có: số mũ từ 2 đến 9 giống nhau; mẫu đều cộng 1
=> Ta chỉ có thể so sánh phần cơ số
vì 7>3 => 7 mũ n>3 mũ n
=> A lớn hơn B
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
xét A và B có: số mũ từ 2 đến 9 giống nhau; mẫu đều cộng 1
=> Ta chỉ có thể so sánh phần cơ số
vì 7>3 => 7 mũ n>3 mũ n
=> A lớn hơn B
Hãy so sánh:
a) A= \(\frac{178}{179}+\frac{179}{180}+\frac{183}{181}\)với 3.
b) A= \(\frac{1+5+5^2+5^3+...+5^{10}+5^{11}}{1+5+5^2+5^3+...+5^9+5^{10}}\)và B=\(\frac{1+7+7^2+7^3+...+7^{10}+7^{11}}{1+7+7^2+7^3+...+7^9+7^{10}}\)
So sánh:
a)\(\frac{7^{15}}{1+7+7^2+...+7^{14}}\) và \(\frac{9^{15}}{1+9+9^2+...+9^{14}}\)
b) \(\frac{1+3+3^2+...+3^{10}}{1+3+3^2+...+3^9}\)và \(\frac{1+5+5^2+...+5^{10}}{1+5+5^2+...+5^9}\)
SO SÁNH:
A =\(\frac{7^{10}}{1+7+7^2+7^3+...+7^9}\)
VÀ B = \(\frac{5^{10}}{1+5+5^2+5^3+...+5^9}\)
3. so sánh
a. \(\frac{10^9+4}{10^9-1}\)và \(\frac{10^9+1}{10^9-4}\)
b. \(\frac{7^{10}+1}{7^{10}-1}\)và \(\frac{7^{10}-1}{7^{10}-3}\)
c. \(\frac{n+2}{n+9}\)và \(\frac{n+7}{n+8}\)\(\left(n\in N\right)\)
So Sánh :
a) \(\frac{9^{10}-4}{9^{10}-5}\) và \(\frac{9^{10}-2}{9^{10}-3}\)
b)\(\frac{2.7^{10}-1}{7^{10}}\) và \(\frac{2.7^{10}+1}{7^{10}+1}\)
So sanh A va B, biet :
a)\(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8};B=\frac{1+3+3^2+...+3^9}{1+3+3^2+...+3^8}\)
b)\(A=\frac{7^{10}}{1+7+7^2+...+7^9};B=\frac{5^{10}}{1+5+5^2+...+5^9}\)
So sánh :
A = \(\frac{1+2+3+4+5+6}{7+8+9+10+11+12}\) ; B = \(\frac{1+2+3+4+5+6+7}{7+8+9+10+11+12+13}\)
So sánh giá trị 2 biểu thức sau:
A = \(\frac{1+7+7^2+...+7^9}{1+7+7^2+...+7^{10}}\) và B = \(\frac{1+5+5^2+..+5^9}{1+5+5^2+...+5^{10}}\)
Giúp tớ với :3
Mình xin cách giải nhoa
Cho A = \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
B = \(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\)
a) So sánh A và B
b) Chứng minh A = \(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}\)