Bài 5: Những hằng đẳng thức đáng nhớ (Tiếp)

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trương Thị Hương Giang

So sánh:

a)

\(\dfrac{x-y}{x+y} và \dfrac{x^2-y^2}{x^2+y^2}\) với x>y>0

​b) 216 và (2+1)(22+1)(2​4+1)(28​+1)

​ Giải chi tiết giúp mk vs!!!😃 Thanks nhìu ạ

Nguyễn Thị Thu
25 tháng 9 2017 lúc 12:19

b. Ta có: \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)=\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1< 2^{16}\)

\(\Rightarrow\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)< 2^{16}\)

Murana Karigara
25 tháng 9 2017 lúc 12:20

\(\dfrac{x-y}{x+y}=\dfrac{\left(x-y\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2+y^2\right)}\)

\(\dfrac{x^2-y^2}{x^2+y^2}=\dfrac{\left(x+y\right)\left(x^2-y^2\right)}{\left(x+y\right)\left(x^2+y^2\right)}\)

Như vậy cần so sánh:

\(\left(x-y\right)\left(x^2+y^2\right)\)\(\left(x+y\right)\left(x^2-y^2\right)\)

Cần so sánh:

\(x\left(x^2+y^2\right)-y\left(x^2+y^2\right)\)\(x\left(x^2-y^2\right)+y\left(x^2-y^2\right)\)

\(x^3+xy^2-yx^2-y^3\)\(x^3-xy^2+yx^2-y^3\)

\(\left(x^3-y^3\right)+xy^2-yx^2\)\(\left(x^3-y^3\right)-xy^2+yx^2\)

Cần so sánh:

\(xy^2-yx^2\)\(yx^2-xy^2\)

Cộng cả 2 vế với \(xy^2\)\(yx^2\)

Cần so sánh:

\(xy^2-yx^2+xy^2+yx^2\)\(yx^2-xy^2+xy^2+yx^2\)

Cần so sánh

\(2xy^2\)\(2yx^2\)

\(xy^2\)\(yx^2\)

Xét các trường hợp nhỏ hơn,lớn hơn,bằng

\(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\)

\(=2^{16}-1< 2^{16}\)


Các câu hỏi tương tự
Trần Văn Hưng
Xem chi tiết
Mộc Lung Hoa
Xem chi tiết
Phạm Trần Hoàng Anh
Xem chi tiết
Nguyễn Tú Anh
Xem chi tiết
Nguyễn Long
Xem chi tiết
Trịnh Thị Nhung
Xem chi tiết
Nguyễn Minh Hằng
Xem chi tiết
yến hải
Xem chi tiết
Song Lam Diệp
Xem chi tiết