Ta có: \(B=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\cdot\ldots\cdot\left(1-\frac{1}{100^2}\right)\)
\(=\left(1-\frac12\right)\left(1-\frac13\right)\cdot\ldots\cdot\left(1-\frac{1}{100}\right)\left(1+\frac12\right)\left(1+\frac13\right)\cdot\ldots\cdot\left(1+\frac{1}{100}\right)\)
\(=\frac12\cdot\frac23\cdot\ldots\cdot\frac{99}{100}\cdot\frac32\cdot\frac43\cdot\ldots\cdot\frac{101}{100}\)
\(=\frac{1}{100}\cdot\frac{101}{2}=\frac{101}{200}>\frac{100}{200}=\frac12\)
Ta có: \(\frac{1009}{2020}<\frac{1010}{2020}\)
=>\(A<\frac12\)
=>\(A<\frac12
=>A<B