\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
mà \(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=2-\frac{1}{100}< 2\)
Vậy \(A< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}< 2\)
=>A<2(đpcm)
Ta có: A = 1 + 1/22+1/32+1/4^2+...+1/100^2 < 1+1/1.2 +1/2.3+1/3.4+...+1/99.100
=> A < 1+(1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100)
A < 1+(1-1/100)
A < 1+99/100
Vì 1+99/100 < 2 nên A < 2
vì 1/2^2+.....+1/100^2 đã bé hơn 1 nên tất nhiên là phải bé hơn 2