a) Ta có:
\(9999^{10}>9801^{10}\)
Mà \(9801^{10}=\left(99^2\right)^{10}=99^{20}\)
Vậy \(99^{20}< 9999^{10}\).
b) Ta có:
\(48.50^5=2^4.3.5^5.10^5=\left(2^4.5^4\right).3.5.10^5\)
\(=10^4.10^5.15>10^4.10^5.10\)
Mà \(10^4.10^5.10=10^{10}\)
Vậy \(10^{10}< 48.50^5.\)
câu a Ta có: 9999^10 = 99^10 * 101^10 (1) 99^20 = 99^10 * 99^10. (2) Từ 1 và 2 → 9999^10 > 99^20. Câu b: Ta có: 10^10=10^5 * 10^5 =5^5 * 32 * 10^5 (1) ; 48*50^5= 48 * 10^5 * 5^5 (2) . Vì 48>32 nên (2)>(1)→ 48*50^5 > 10^5