\(5^{24680}\)và \(2^{37020}\)
\(5^{24680}=\left(5^4\right)^{6170}=625^{6175}\)
\(2^{37020}=\left(2^4\right)^{9255}=16^{9255}\)
\(625^{6175}>16^{9255}\)
Vậy \(5^{24680}>2^{37020}\)
Ta có:
\(^{5^{24680}=\left(5^2\right)^{12340}=25^{12340}}\)
\(2^{37020}=\left(2^3\right)^{12340}=8^{12340}\)
Do 25 > 8 => \(5^{24680}>2^{37020}\)
Vậy \(5^{24680}>2^{37020}\)
\(5^{24680}\)và \(2^{37020}\)
\(5^{24680}=\left(5^5\right)^{4936}=3125^{4936}\)
\(2^{37020}=\left(2^5\right)^{7404}=32^{7404}\)
Ta thấy \(3125^{4936}>32^{7404}\Rightarrow5^{24680}>2^{37020}\)