\(\sqrt[]{27}-\sqrt[]{35}\) và \(6-\sqrt[]{51}\)
Giả sử \(\sqrt[]{27}-\sqrt[]{35}< 6-\sqrt[]{51}\)
\(\Leftrightarrow27-2.\sqrt[]{27.35}+35< 36-12\sqrt[]{51}+51\)
\(\Leftrightarrow63-6.\sqrt[]{105}< 87-12\sqrt[]{51}\)
\(\Leftrightarrow12\sqrt[]{51}-6.\sqrt[]{105}< 24\)
\(\Leftrightarrow6\sqrt[]{3}\left(\sqrt[]{17}-\sqrt[]{35}\right)< 24\)
\(\Leftrightarrow\sqrt[]{3}\left(\sqrt[]{17}-\sqrt[]{35}\right)< 4\)
mà \(\sqrt[]{17}-\sqrt[]{35}< 0\)
\(\Leftrightarrow\sqrt[]{3}\left(\sqrt[]{17}-\sqrt[]{35}\right)< 0< 4\left(đúng\right)\)
Vậy \(\sqrt[]{27}-\sqrt[]{35}< 6-\sqrt[]{51}\)