\(\dfrac{327}{326}=1\dfrac{1}{326},\dfrac{326}{325}=1\dfrac{1}{325}\)
Do \(\dfrac{1}{326}< \dfrac{1}{325}\Rightarrow1\dfrac{1}{326}< 1\dfrac{1}{325}\)
\(\Rightarrow\dfrac{327}{326}< \dfrac{326}{325}\)
Có: \(\dfrac{327}{326}=1+\dfrac{1}{326}\)
\(\dfrac{326}{325}=1+\dfrac{1}{325}\)
Mà \(\dfrac{1}{326}< \dfrac{1}{325}\Rightarrow1+\dfrac{1}{326}< 1+\dfrac{1}{325}\Rightarrow\dfrac{327}{326}< \dfrac{326}{325}\)
Giải:
\(\dfrac{327}{326}=1\dfrac{1}{326},\dfrac{326}{325}=1\dfrac{1}{325}\)
Vì \(\dfrac{1}{326}< \dfrac{1}{325}\Rightarrow1\dfrac{1}{326}< 1\dfrac{1}{325}\)
Vậy \(\dfrac{327}{326}< \dfrac{326}{325}\)
Hok tốt