Ta có :
\(A=1+3+3^2+3^3+...+3^{2018}\)
\(3A=3+3^2+3^3+3^4+...+3^{2019}\)
\(3A-A=\left(3+3^2+3^3+3^4+...+3^{2019}\right)-\left(1+3+3^2+3^3+...+3^{2018}\right)\)
\(2A=3^{2019}-1=B\)
\(\Rightarrow\)\(A=\frac{1}{2}B\) hay \(A< B\)
Vậy \(A< B\)
Chúc bạn học tốt ~