\(2017^{2015}\)\(=\left(...3\right)\)
\(2015^{2014}\)\(=\left(...9\right)\)
mà \(2017^{2015}\)>\(2015^{2014}\)vì 2017>2015 ; 2015>2014
\(\Rightarrow\left(...3\right)-\left(...9\right)=\left(...4\right)\)\(\Rightarrow2017^{2015}\)\(-2015^{2014}\)\(\)chia 5 dư 4