số cặp (x;y) nguyên thoả mãn phương trình: 2x6 + y2 - 2x3y = 320
số cặp x,y thỏa mãn phương trình\(2x^6+y^2-2x^3y=320\)
Biết hệ phương trình \(\left\{{}\begin{matrix}x+3y=1+m\\2x-y=7\end{matrix}\right.\) có nghiệm duy nhất (x0;y0) thỏa mãn x0+2y0.Khẳng định nào dưới đây là đúng?
A.-2≤m<0 B.0≤m<2 C.2≤m<4 D.4≤m<6
Số cặp \(\left(x_0;y_0\right)\) nguyên thỏa mãn phương trình:\(2x^6+y^2-2x^3y=320\) là
Bằng cách tìm giao điểm của hai đường thẳng d: −2x + y = 3 và d’: x + y = 5, ta tìm được nghiệm của hệ phương trình − 2 x + y = 3 x + y = 5 là ( x 0 ; y 0 ) . Tính y 0 – x 0
A. 11 3
B. 13 3
C. 5
D. 17 3
Cho hệ phương trình: 2x+y=2
x+2y=4m+5
a, Giải hệ với m=-1
b, Tìm m để hệ có nghiệm (x0;y0) thỏa mãn x0=y0-2
tìm số cặp (x;y) nguyên thỏa mãn pt \(2x^6+y^2-2x^3y=320\)
Ttìm cặp số x, y nguyên thỏa mãn 5x^2 +y^2 -2xy+2x-6y+1<0
Tìm cặp số x,y thỏa 5x^2 +2y+y^2 -4x-40=0
Giải hệ phương trình sau:
xy(x-y)=2
9xy(3x-y)+6=26x^3 -2y^3
Bài 1 : Tìm các số tự nhiên \(x\) thoả mãn : \(2^x+3^x=35\)
Bài 2 : Tìm \(x;y\inℤ^+\) thoả mãn : \(x!+y!=\left(x+y\right)!\)
Bài 3 : Chứng minh rằng phương trình sau không có nghiệm nguyên :
\(x^{17}+y^{17}=19^{17}\)